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Abstract

Instance segmentation is a promising yet challenging

topic in computer vision. Recent approaches such as Mask

R-CNN typically divide this problem into two parts – a

detection component and a mask generation branch, and

mostly focus on the improvement of the detection part. In

this paper, we present an approach that extends Mask R-

CNN with five novel techniques for improving the mask gen-

eration branch and reducing the conflicts between the mask

branch and the detection component in training. These five

techniques are independent to each other and can be flexibly

utilized in building various instance segmentation architec-

tures for increasing the overall accuracy. We demonstrate

the effectiveness of our approach with tests on the COCO

dataset.

1. Introduction

Instance segmentation is a promising and challenging

task in vision, with potential applications in medical imag-

ing [5, 6], autonomous vehicles [1, 33], smart city [29],

robotics [30, 3], etc. The problem has received significant

interests in recent years. It can be viewed as a more com-

plex case than semantic segmentation, as we not only need

to segment and classify the objects, but also should identify

each individual instance.

In the literature, researchers have proposed a number of

approaches for instance segmentation. One popular idea

is to cluster the similar contents in the image. For in-

stance, Bert et al. [12] explored an approach of using con-

volutional neural networks (CNNs) to produce a represen-

tation that can be easily clustered into instances. Alireza et

al. [13] proposed a fully convolutional embedding model

to segment the instances by computing the likelihood of

two pixels belonging to the same object. Alejandro et

al.’s work in [25] also received significant interests. It in-

troduced a new algorithm named associative embedding,

which can teach networks to output joint detection and

group assignments in a single stage. Similar idea also ap-

peared in [31, 17, 37, 32].

One of the most successful object detection methods is

Faster R-CNN [27], which extended the work in fast R-

CNN [14] by adding the region proposal network (RPN)

to speed up the region proposal process. This approach

has also been applied to instance segmentation and led to

a number of proposal-based methods. For instance, Dai et

al. [11] fused the detection and classification steps with a

cascade network, and obtained the top result in the 2015

MS-COCO instance segmentation challenge. Xu et al. [35]

extracted regional, location and boundary features from

gland histology images and created a CNN to identify the

object individuals. Later, Li et al. [18] adopted the idea from

InstanceFCN [11] and used position-sensitive score map to

perform object segmentation and detection at the same time.

Recently, Mask R-CNN [15] and its extensions such as

PANet [23] take advantage of the Faster R-CNN detection

framework for the further improvement of instance segmen-

tation. According to them, an instance segmentation task

can be viewed as the combination of a detection problem

and a segmentation problem. Their solutions first apply a

detection component and then a mask generation branch,

where segmentation is performed based on the Region of

Interest (RoI) features. Such approaches avoid the problem

of spurious edges in the FCIS method [18], and also elim-

inate the misalignment in the RoI-pooling process and get

exact spatial locations. They represent the state-of-the-art

results on instance segmentation.

However, most of these works focus on improving the

detection component, while there are still significant lim-

itations in the mask branch that require further improve-

ments: 1) the mask branch can only get the features from

the RoI and may suffer from the loss of global semantic in-

formation; 2) imperfect bounding boxes degrade the overall

performance in the mask branch; 3) simple mask branch ar-

chitecture with one deconvolutional layer and the lack of

boundary refinement lead to coarse results; and 4) conflicts

in multitask training (due to different learning pace of each

part) may cause performance degradation.

To address these limitations, we developed a new in-

stance segmentation framework MaskPlus in this work,

which extends Mask R-CNN with five techniques to boost
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the performance of mask generation: 1) contextual fusion,

2) deconvolutional pyramid module, 3) boundary refine-

ment, 4) quasi-multitask learning, and 5) biased training.

More specifically, the contributions of this work include:

• We create novel techniques – contextual fusion, quasi-

multitask learning and biased training to incorporate

global information into the mask generation branch,

get better supervised mask training and reduce the con-

flicts that happen in multitask training.

• We further extend the existing techniques, including

boundary refinement, deconvolutional pyramid mod-

ule, to improve the overall performance and get finer

mask results.

• We test our approach on the COCO instance segmen-

tation dataset [22] and show our competitive results

on CodaLab COCO leaderboard. We conduct ablation

studies to illustrate the efficacy of each technique, and

also evaluate the overall instance segmentation perfor-

mance. It is demonstrated that our MaskPlus is effec-

tive and achieves the state-of-the-art results.

The rest of the paper is organized as follows. Section 2

introduces related works in more details. Section 3 presents

our proposed MaskPlus framework, with details for each

of the five techniques. Section 4 shows the experimental

results of our ablation studies and overall evaluation. Sec-

tion 5 concludes the paper.

2. Related Work

2.1. Instance Segmentation

One common approach for instance segmentation is

clustering, which gathers the similar pixels to form the in-

stances. Liang et al. [19] used proposal free network to

generate the coordinates of the instance bounding box and

the confidence scores of different categories for each pixel,

and then added clustering as the post-processing module

to generate the instance results. Bert et al. [12] presented

an approach to produce a representation from CNNs that

can be easily clustered into instances by applying the mean-

shift algorithm to obtain cluster centers. Alireza et al. [13]

learned a similarity metric by creating a deep embedding

model and grouped similar pixels together. Similar ideas

can also be found in [25, 31, 17, 37, 32].

Another type of approach leverages the success from

object detection methods such as the Faster R-CNN

model [27] and its region proposal network. Dai et al. [11]

won 2015 MS-COCO instance segmentation challenge by

building a cascade network and connected the steps of de-

tection and segmentation. Xu et al. [35] split the entire in-

stance segmentation task into sub-tasks and generated re-

gional, location and boundary features from gland histol-

ogy images to classify the objects. Li et al. [18] applied

RoIs onto the position-sensitive score map to address in-

stance segmentation. Mask R-CNN [15] presented one of

the most promising methods in recent years. It is built on

the Faster R-CNN framework and adds an FCN backend af-

ter the RoIs as the mask generation branch. It also solves the

problem of misalignment in the RoI-pooling process with a

RoIAlign layer. Later, Liu et al. [23] extended the Mask R-

CNN model by improving the backbone networks, adding

bottom-up path augmentation and adding fully-connected

paths from the features of RoIs to the features after decon-

volutional layer. These extensions mostly focus on the de-

tection component and do not address the limitations in the

mask generation branch, which is the focus of our paper.

2.2. Semantic Segmentation

For the related problem of semantic segmentation, deep

learning methods have been widely used. In Long et al.’s

FCN model [24], end-to-end algorithm was introduced and

deconvolution was utilized for up-sampling. Later, Badri-

narayanan et al. [2] improved the method by recording the

position information during pooling and applied it in the

up-sampling process. U-Net [28] enhanced the information

delivery from earlier layers to the higher layers with spe-

cially designed U-shape network framework. Yu et al. [36]

applied the dilated convolutions for semantic segmentation.

Chen et al. [9] adopted a similar idea, and used atrous spatial

pyramid pooling (ASPP) and fully connected CRF to make

model more accurate. Other works include RefineNet [20],

PSPNet [38], Large Kernel Matter [26], DeepLab v3 [10],

etc.

3. Proposed MaskPlus Framework

In this section, we introduce the proposed MaskPlus

Framework, and explain the details of the five techniques

and how they address the limitations of previous mask gen-

eration methods in instance segmentation.

Figure 1 shows an overview of MaskPlus, which extends

the Mask R-CNN framework. First, a Faster R-CNN model

with FPN structure is applied as the backbone. It has a

branch with two detection related outputs - a classification

output and a bounding box output. The RoIAlign technique

is used to replace the original RoI-pooling process to give

the pixel-to-pixel alignment for the results. Then the mask

generation branch is applied to the output of RoI features to

generate the mask output. The novelty of MaskPlus resides

on the five techniques for improving the mask generation

branch, which are introduced below.

3.1. Contextual Fusion

In the mask branch of Mask R-CNN, the features are

only generated from the RoIs. We believe that this could

limit the generation of mask prediction because of the lack-

ing of contextual information: First, the semantic informa-
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Figure 1. Overview of the MaskPlus Framework. Given an input image, MaskPlus outputs a generated segmentation mask. It extends

the Mask R-CNN framework with various techniques on mask generation, including contextual fusion (in red), deconvolutional pyramid

module (in green), improved boundary refinement (in blue), quasi-multitask learning (in yellow), and biased training (not shown in the

figure). The figure is best viewed in color.
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Figure 2. Contextual fusion.

tion of one object could also contain other objects, as they

may have spatial relation, semantic relation, etc. For in-

stance, a car may exist on a road but not in the sky (not yet),

and thus the road could have some part of the information

of car objects. It may not be effective to separate the ob-

jects and segment them one by one. Second, the RoIs are

not always perfect. They may not contain some parts of the

target object, which could make it difficult to segment these

fragmentary objects. Third, some parts of the object that do

not belong to the RoI’s category may exist at the boundary.

They may be mis-classified and disturb the mask genera-

tion, as they also lack their own semantic meaning and the

neural networks cannot recognize them.

To address these challenges, we create a new branch

from the features just before the RoIAlign module, as

shown with the red lines in Figure 2. In the fusion proce-

dure of global features, we take FPN last-layer features and

apply only one full-image-size proposal at a newly-created

RoIAlign layer. Then through 3 conv layers (kernel size

is 3, stride is 1, filter number are 512, 256, 256, respec-

tively), the outcomes on this new branch (the red-line path

in Figure 1) will be added to the RoIAlign features from the

original mask branch. The newly created RoIAlign layer

and the old one have the same configuration and size of fea-

ture outputs. Such fusion helps the RoI features to get more

contextual information.

Note that our approach is very different from the Fully-

connected Fusion technique in [23].In [23], the input fea-

tures forwarded to the up-sampling layer contain two con-

catenated parts – the output features from the ROI Align

layer (f1) and the output features of the Fully-connected

Fusion layer (f2). However, the input of the Fully-

connected Fusion layer is just f1, which is a set of features

of ROIs. It has lost the global spatial relationship between

these ROIs, and the spatial information it contained is lim-

ited within individual proposals. In our approach, the input

features are full-size features before the ROI Align layer,

which contain the global spatial relationship of each object.

Besides, the motivation and used methods are also differ-

ent in the two approaches. [23] aims to utilize the strong

points of fully connected layer, which does not exist in our

module.
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3.2. Deconvolutional Pyramid Module

Motivated by the structure of Feature Pyramid Net-

works(FPN) [21], which builds a pyramid module to fuse

multi-level features in the early stages of the network, we

define a deconvolutional pyramid module as a set of decon-

volutional layers (stride = 2) followed by the equal num-

bers of convolutional layers (stride = 2), as shown with the

green lines in Figure 1. Our design is different from the FPN

though – instead of first applying down-sampling and then

up-sampling, our module up-samples first and then down-

samples, as shown with more details in Figure 3.

Figure 3. Deconvolutional pyramid module.

We believe that, instead of just delivering the original

features to a single up-sampling layer, our module can fine-

tune the existing features and combine multi-level semantic

meanings together to generate better mask prediction. We

observe that adding this module can improve the mask ac-

curacy among all sizes (S, M, L) in our experiments (details

in Section 4).

3.3. Improved Boundary Refinement

In the mask generation of instance segmentation, we of-

ten observe blurring boundaries – as the larger scores in the

feature map mainly focus on the center part of the objects

score map rather than staying at the boundary, it is often

difficult to clearly identify the mask boundary. To address

this challenge, we propose to learn the boundary by adding

another branch, as shown with the blue lines in Figure 1 and

detailed in Figure 4.

Our approach is inspired by the work from Peng et

al. [26], which uses a residual block to sharpen the bound-

ary. The difference is that we think it is insufficient to just

…

B
N

C
o
n
v

R
R
e
L
u

B
N

C
o
n
v

R
R
e
L
u

Figure 4. Improved boundary refinement.

learn the boundary with only two convolutional layers that

act as a single residual block. Instead, we create a branch

that consists of several convolutional modules with dense

connections for better learning ability to refine the bound-

ary information. In our experiments, we demonstrate the

effectiveness of this improved boundary refinement by com-

paring its segmentation performance with both the original

boundary refinement in [26] and the model without bound-

ary refinement.

3.4. Quasi-multitask Learning

Deep convolutional neural networks are thought to be

strongly rotation invariant and scale invariant, however

using them may still be insufficient to provide the de-

sired robustness. Thus, researchers have proposed image-

augmentation techniques (that include pre-processing for

image rotations and rescaling to multiple scales) and fea-

ture rescaling and extracting methods such as FPN [21].

In this work, instead of learning the features from dif-

ferent scales of images (augmentation at the top of the net-

work) or creating a feature pyramid architecture (augmen-

tation in the middle of a network), we consider how the dif-

ferent scales labels can be a guide for helping the networks

to enhance scale invariant ability (we call it – augmenta-

tion at the end of the network) while not affecting original

networks’ output scale/architecture/capacity.

In the past papers, most segmentation models used

smaller size mask labels is because of the limitation of

computational resources. Large mask labels can cost much

while decreasing the mask size leads to performance lose,

and researchers need to make a balance between the re-

source consumption and performance.

We think in another direction and develop a quasi-

multitask learning approach, aka quasi-multitask as we per-

form similar tasks, to increase the robustness of our frame-

work, as shown with the yellow lines in Figure 1.

More specifically, we tested the effect of combined train-

ing on the original size of mask (resized to 28 * 28), with the

0.5x size of mask (14 * 14), or the 2x size of mask(56 * 56).

These branches are parallel to each other and inserted after

ROIAlign features (See Section 4.7 for more details). And

the most important thing is that – regardless of what other

scales we add, we never use these different scale branches

as the output of the final mask. That is to say, the parameters

or FLOPs never increase in test stage and the output scale

is never changed, while the performance increases. They

are similar to a scaffolding which will be removed after the

training finished. To the best of our knowledge, we are the

first to explore this approach.

3.5. Biased Training

The original training strategy in Mask R-CNN trains the

detection component and the mask generation branch to-
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gether. In the Faster R-CNN’s architecture, the RPN could

be trained in advance, however it still does not solve the

problem that the mask branch may not get a good RoI fea-

ture and thus provide ineffective feedback to the early stages

of the training process. In some cases, the feedback from

the mask branch may even disturb the training of the de-

tection component, and then the disturbed detection results

will have a negative impact on mask branch itself in the later

stages.

In this work, we try to lower the influence of the train-

ing of the mask branch in the early stages, while still keep-

ing the end-to-end learning pattern. First, we multiply

the loss in the mask branch with a weight greater than

1, and define the multitask loss on each sampled RoI as

L = Lcls+Lbox+α(Lmask). Lcls and Lbox are the classi-

fication loss and bounding-box loss, respectively, as defined

in [14]. Lmask is the mask loss as defined in [15]. The pa-

rameter α is initially larger than 1 (e.g., chosen as 1.5 in our

experiments).

Intuitively, increasing one part of the loss seems to ad-

dress it and makes it better. But in our design, it happens in

opposite direction. The novelty that should be addressed is

that using such loss function has the same effect as increas-

ing the learning rate of the mask branch, which will force

the mask branch to converge faster in the early stages. In

this way, the potential negative influence of the mask branch

at the early stages can be largely reduced. Then, α is set to

1 during the normal training process in the later stages. This

is because this technique also causes worse mask result in

the long run. Thus we need another stage of normal training

to mitigate the gap.

4. Experimental Results

4.1. Dataset

All of our experiments are performed on the challenging

COCO dataset [22], which is also used by Mask R-CNN.

The reason why we choose COCO dataset is that it is cur-

rently the most popular and general segmentation dataset

which contains a huge amount of images with different

scales. The dataset has 115k training images and 5k valida-

tion images on 80 object categories. It also contains 41k test

images for online testing, whose ground-truth labels are not

publicly available. Our framework is trained on the train-

2017 subset and perform the ablation study on the val-2017

subset. The standard COCO metrics includes AP (averaged

over IoU thresholds), AP50, AP75, and APS , APM , APL

(AP for images at different scales: small, medium, large).

The following experiments are evaluated using mask IoU,

unless specifically mentioned as detection results (AP bb).

4.2. Training Configuration

Our implementation is based on the Tensorpack frame-

work [34]. We used the re-implemented version of Mask

R-CNN in Tensorpack as the baseline, which shows better

mask AP than the original paper. The pretrained model is

publicly available from the Tensorpack model zoo. Image

centric training [14] is applied so that the images are re-

sized to 800 pixels on the shorter edge, 1333 pixels on the

longer edge, without changing the aspect ratio. Each image

has 512 sampled RoIs, and their positive to negatives ratio

is 1:3. We use 8 Titan RTX GPUs in training and single

image per GPU for 360000 iterations. The learning rate is

0.02, weight decay is 0.0001, and momentum is 0.9. Other

configurations are the same as Mask R-CNN. The RPN is

trained separately and do not share the weights with Mask

R-CNN. In addition, all ablation studies are tested based

on the ResNet-50-FPN backbone for faster training/testing

speed.

4.3. Examples with visual explanation

Please zoom in to see the visual explanation for tech-

niques about architectures in Figure 5. We can see the pow-

erful effects that help Mask R-CNN do better work.

4.4. Contextual Fusion Results

Table 1 shows the results for adding the contextual fusion

technique to the original Mask R-CNN framework, and we

can see the improvements from using such technique. We

observe that the configuration of a stack of convolutional

layers between the new RoIAlign layer and the adding layer

also affects the improvement. We tried different configu-

rations and find the best to be [720, 512, 512, 256] (the

numbers represent the filter numbers of these consecutive

convolutional layers, number of layers change according to

configuration), and even with deeper layers or wider filter

numbers, the performance will decrease on the contrary (be-

cause simply adding more capacity on a big network will

increase the difficulties on training optimization.).

With the help of the contextual fusion, the AP of mask

branch increases from 35.1 to 35.5, while the precision of

the detection component is not affected. More improvement

is gained for middle- and large-size objects. This validates

the function of the contextual fusion.

4.5. Deconvolutional Pyramid Module Results

In our deconvolutional pyramid module, two deconvolu-

tional layers are followed by two convolutional layers, as

shown in Figure 3. They have strides of 2 and filter size

of 256. The features are added instead of concatenated.

The experimental results of applying this module are shown

in Table 2. We can see that using this technique increases

the mask AP from 35.1 to 35.4. Moreover, the accuracy is

mainly improved for small- and middle-size objects.
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Figure 5. 1). In the blue box, Mask R-CNN is at left. MaskPlus with only contextual fusion is at right – things like potted plant that should

not appear in that scenario are removed, and the boundary fragment is correctly classified. 2). In the green box, Mask R-CNN is at left.

MaskPlus with only deconvolutional pyramid module is at right – redundancy is removed with the help of multi-scale feature information.

3). In the yellow box, Mask R-CNN is at upper left. Original boundary refinement is at middle left. Only using improved boundary

refinement is at lower left. The right side is the result from using improved boundary refinement in MaskPlus – the boundary is refined and

has better quality from top to bottom. 4). In the purple box, Mask R-CNN is at left. MaskPlus with only quasi-multitask learning is at right

– multi-scale supervision prevents some misclassifications from single-scale supervision.

Method AP AP50 AP75 APS APM APL

Mask R-CNN 35.1 56.6 37.5 18.4 38.4 48.3

Mask R-CNN +

Contextual fusion

256-256

35.3 56.7 37.6 18.6 38.6 48.6

Mask R-CNN +

Contextual fusion

256-256-256

35.4 56.9 37.7 18.4 38.5 48.7

Mask R-CNN +

Contextual fusion

720-512-512-256

35.5 57.0 37.8 18.5 38.7 48.8

Table 1. Ablation study of contextual fusion.

Method AP AP50 AP75 APS APM APL

Mask R-CNN 35.1 56.6 37.5 18.4 38.4 48.3

Mask R-CNN +

Deconvolutional

pyramid module

35.4 56.9 37.6 18.8 38.6 48.3

Table 2. Ablation study of deconvolutional pyramid module.

4.6. Improved Boundary Refinement Results

We choose a stack of convolutional modules with dense

connections to learn the boundary deficiency. Specifically,

each convolutional module consists of six layers in or-

der: BatchNorm, PReLu, Conv (filters = 16), BatchNorm,

PReLu, and Conv (filters = 4). The later modules will con-

catenate the input features from all previous modules as its

own input features. The concatenation will be repeated for

4 modules. Figure 3 reflects this kind of design pattern.

We compare our improved boundary refinement method

with the original Mask R-CNN and the Mask R-CNN with

boundary refinement method described in [26]. The results

are presented in Table 3. Our approach provides improve-

ments on mask precision over both cases. Note that the pre-

cision is mostly improved for middle- and large-size objec-

tives (no improvement for small-size objects).

4.7. Quasi-multitask Learning Results

Instead of augmenting in front or middle of the networks,

we developed the quasi-multitask learning technique to aug-

ment in the end (after the last layer of the networks). In the

original Mask R-CNN configuration, the features from the

RoIAlign layer will come across several convolutional lay-

ers with small filter numbers (these layers are the original

settings in Mask R-CNN, noted to be L), and then they are
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Method AP AP50 AP75 APS APM APL

Mask R-CNN 35.1 56.6 37.5 18.4 38.4 48.3

Mask R-CNN +

Original boundary

refinement

35.2 56.6 37.6 18.3 38.2 48.4

Mask R-CNN +

Improved boundary

refinement

35.5 56.9 38.0 18.3 38.8 49.1

Table 3. Ablation study of improved boundary refinement.

up-sampled to 2x size (ground truth mask is resized to 28

* 28). Here we create another branch instead (parallel to

L) follows the RoIAlign layer features. This branch has the

same layers as L except for one layer – we will delete the

last deconvolutional layer or add a deconvolutional layer at

last with 2x upsampling scale to keep the output features to

be 0.5x or 2x scale. Then the output mask will compute loss

with 0.5x size of the original configuration (14 * 14) or 2x

size (56 * 56). And for the most important thing is that the

output mask is still the original branch, not the newly cre-

ated one (whose purpose is only to help calculate the quasi-

multitask learning loss). As shown in Table 4, both the 0.5x

and 2x quasi-multitask learning demonstrate improvements

on the mask accuracy.

Method AP AP50 AP75 APS APM APL

Mask R-CNN

(1.x mask)
35.1 56.6 37.5 18.4 38.4 48.3

Mask R-CNN

(0.5x mask)
34.3 56.4 36.7 17.9 37.7 46.4

Mask R-CNN

(1.x mask) +

0.5x quasi-multitask

learning

35.4 56.7 37.7 18.4 38.6 48.7

Mask R-CNN

(1.x mask) +

2x quasi-multitask

learning

35.2 56.5 37.5 18.5 38.3 48.4

Table 4. Ablation study of quasi-multitask learning.

4.8. Biased Training Results

As introduced in Section 3, we try to reduce the (nega-

tive) influence of the mask branch training in the first half

stages on the detection component. Recall that the multi-

task loss is: L = Lcls +Lbox + α(Lmask), and we initially

set α = 1.5 to increase the learning rate of the mask branch

and force it to converge faster in early stages (α = 1 in the

later stages). Table 5 shows the results of such biased train-

ing in detection, and Table 6 shows its mask results. We can

see that both detection component and mask branch gain

benefits from biased training.

4.9. Overall Effectiveness of MaskPlus

We adopt all methods in best settings introduced above

to generate a final model, aka MaskPlus. We compare our

Method AP bb AP bb
50

AP bb
75

AP bb

S
AP bb

M
AP bb

L

Mask R-CNN 38.3 59.8 41.6 21.8 41.9 50.3

Mask R-CNN +

Biased training
38.6 60.0 41.8 21.7 42.1 51.3

Table 5. Ablation study of biased training on the detection compo-

nent.

Method AP AP50 AP75 APS APM APL

Mask R-CNN 35.1 56.6 37.5 18.4 38.4 48.3

Mask R-CNN +

Biased training
35.4 56.7 37.8 18.2 38.5 48.8

Table 6. Ablation study of biased training on the mask results.

MaskPlus with state-of-the-art approaches in the literature.

As shown in Table 7, our approach clearly shows the state-

of-the-art performance. To be specific, MaskPlus outper-

forms original Mask R-CNN in all provided metrics. And

even compared with concurrent works [16] [7] which are

also improved works based on Mask R-CNN, we can still

give a competitive results. And we also create MaskPlus+

which is achieved based on a naive cascade version of Mask

R-CNN as described in [4] (also used in [7]), which takes

0.5 times longer training steps for better model conver-

gence. Note that some other techniques such as ResNeXt-

101, multi-GPU synchronized batch normalization, Atrous

Spatial Pyramid Pooling etc, that used in these concurrent

works are not engaged in our work(thus there is potential

for further improvement and collaboration). Finally, some

results are visualized in Figure 6. And our result can be seen

on CodaLab COCO leaderboard.

5. Conclusion

In this paper, we presented five methods for improving

the mask generation in instance segmentation. It contains

three novel techniques contextual fusion, quasi-multitask

learning and biased training, and we also extend the ex-

isting techniques, including boundary refinement, decon-

volutional pyramid module, to further improve the accu-

racy. We incorporated these techniques into Mask R-CNN

to build our MaskPlus framework, and conducted tests on

the COCO dataset. The experiments demonstrate our re-

sults in details and shows the state-of-the-art performance.
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